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Abstract. This is a assignment report of Mathematics of Imaging course.
The topic is image deconvolution.
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1 Introduction

“Imaging is the representation or reproduction of an object’s outward form;
especially a visual representation ” [1]. Imaging system is all around our life,
such as a digital camera and a scanner.

Fig. 1. Typical Imaging System. Image form [3].
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Usually, linear Imaging System can be represented as

< φi, x >=

∫
φi(v|u)x(u)du = yi, i = 1, 2, ...M, (1)

where <,> is the dot product between φi and x, u denotes object space, and v
denotes the detector space, x is the original image (object), φi is the point spread
function (PSF), which describe how the information x transfer to the detector,
and the detected data is yi. M is the number of the detected data. Our goal is
usually reconstruct the x given yi and φi for all i.

Fig. 2. Point spread function. Image is from Wikipedia [2].

If φi is shift invariant, the dot product becomes the convolution operator and
the reconstruction becomes a deconvolution process. For example, if x is just a
one dimensional signal, φi is a Gaussian function with mean i, then the detected
data yi is just x weighted by φi. In other words, yi is the convolution of x and φi.
In discrete setting, the above equation is equivalent to the linear system Ax = y,
where x is a N by 1 vector, y is a M by 1 vector containing yi, A is a M by N
matrix, each row of A is the discretized φi. For example, it may look like [0, 0.1,
0.2, 0.4, 0.2,0.1,0,....], and we can solve x by solving the linear system. If M is
not equal to N, depending on the value of N and M, the linear system can be
either underdetermined or overdetermined. Usually, in deconvolution problem,
M is equal to N, therefore there is a unique solution if A has full rank.

Usually, there are some uncertainty in the detected data yi, which means yi
has noise. So in this case we can not directly solve the linear system Ax = y,
instead, we want to maximum the liklihood of the detected data based on the
noise distribution. The noise distribution depends on the imaging system. Here
we will discuss two common noise distribution, namely, Gaussian distribution
and Poisson distribution.
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2 Method and Implementation

2.1 Gaussian Model

The Gaussian distribution with mean µ and variance σ2 is

p(t) =
1√
2πσ

exp− (t−µ)2

2σ2 .

In Gaussian model, we assume yi is Gaussian distributed with mean < φi, x >
and variance σ2, so

p(yi) =
1√
2πσ

exp− (yi−<φi,x>)2

2σ2 ,

then the joint probability of y is

p(y) =

M∏
i=1

p(yi) =

(
1√
2πσ

)M
exp−

∑M
i (yi−<φi,x>)2

2σ2 =

(
1√
2πσ

)M
exp− ‖Ax−y‖

2
2

2σ2 .

Since σ is constant, though we do not know it, it is easy to see that we can
maximize p(y) by minimizing ‖Ax− b‖, where A is a M by N matrix. Now the
problem is a least squares problem, and we know the solution to this problem is
x = (ATA)−1A−1y. If M is equal to N and A is a full rank matrix, minimizing
‖Ax−b‖ is equivalent to solve the linear system Ax = b, which assumes no noise.
This leads to a interesting conclusion: assuming Gaussian noise is “equivalent”
to assume no noise in this case.

2.2 Implementation of Gaussian Model

‖Ax− b‖22 =

∫
(y − φ⊗ x)2dv

By Parseval’s equality,∫
(y − φ⊗ x)2dv =

∫
F ((y − φ⊗ x)2)dω =

∫
(Y (ω)− Φ(ω)X(ω))2dω, (2)

where F denotes the Fourier transform.
Use calculus of variation, we can compute the gradient of (2) as Y Φ−XΦ2,

so finally,

X(ω) =
Y (ω)Φ(ω)

Φ(ω)2
, and x(u) = F−1(X(ω)), (3)

where F−1 denotes the inverse Fourier transform.
If we use white noise prior, ‖x‖22, we just need to add µ to the denominator

when we compute X(ω) [4], thus equation (3) becomes

X(ω) =
Y (ω)Φ(ω)

Φ(ω)2 + µ
, and x(u) = F−1(X(ω)),

Tips When computing Φ(ω), we need to make sure the domain of φ(v|u) is
the same as the domain of x(u).
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2.3 Poisson Model

The Poisson distribution is

p(k, λ) =
λk exp−λ

k!
,

where k is the expected number of occurrences, and λ is the number of occur-
rences.

In Poisson model, we assume yi is Poisson distributed with expected value
< φi, x >, so

p(yi) =
< φi, x >

k exp−<φi,x>

yi!
,

then the joist probability of y is

p(y) =

M∏
i=1

p(yi) =

M∏
i=1

< φi, x >
yi exp−<φi,x>

yi!
,

and the log of this likelihood is

log(p(y)) =

M∑
i=1

yi log(< φi, x >)− < φi, x > − log(yi!) (4)

When we maximize (4), we can ignore log(yi!) since it is known. So we can
just maximize

M∑
i=1

yi log(< φi, x >)− < φi, x >

By using the Expectation Maximization algorithm [5], the above equation
can be maximized by the following formulas

Expectation: zk+1(u) = xk(u)

∫
φ(v|u)y(v)∫
x(u)φ(v|u)du

dv

Maximization: xk+1(u) = zk+1(u)

(5)

2.4 Implementation of Poisson Model

The implementation of the Poisson Model is straightforward once we obtain
the above formulas (5). We just to compute summaries instead of computing
integrals.

Let f(v) is ∫
y(v)∫

x(u)φ(v|u)du
dv.

One tricky thing is that when I compute
∫
φ(v|u)f(v), since φ(v|u) is a Gaus-

sian blurring function, which means φ(v|u) = φ(u|v), so I actually compute



Image Deconvolution 5∫
φ(u|v)f(v) =

∫
φ(u − v)f(v), which is a convolution and easy to be imple-

mented.

When we add a prior, we just need to change the maximization step. For
example, if we add the white noise prior, ‖x‖22, the maximization step would be

xk+1(u) = xk(u)− ε
(

1− zk+1(u)
xk(u)

− λxk(u)
)

. If we add the H1 prior, ‖∇x‖22, the

maximization step would be xk+1(u) = xk(u)− ε
(

1− zk+1(u)
xk(u)

− λ∆xk(u)
)

.

3 Results

We test 6 different algorithms in this section:

Algorithm1: Gaussian model

Algorithm2: Gaussian model with Prior. We use white noise prior here.

Algorithm3: Poisson model

Algorithm4: Poisson model with Prior. We use either whiter noise or H1

prior.

Algorithm5: deconvlucy algorithm in Matlab using two parameters: decon-
vlucy(blurred Image, PSF);

Algorithm6: deconvlucy algorithm in Matlab using three parameters: decon-
vlucy(blurred Image, PSF,20,sqrt(V));

3.1 Effect of the width of the Gaussian

In Figure 3, we blur the clear image with different width and there are no noise in
the blurred image, then we apply different algorithms, namely Gaussian model,
Gaussian model with prior, Poisson model, Poisson model with prior, and de-
convlucy algorithms in Matlab, to the blurred images. The prior (regularization)
we used here is the white noise prior.

For the top image, the Gaussian model gets the best result, and Poisson
model’s result is alos good and the de-noising regularization does not improve
the performance of both Poisson and Gaussian model. This makes sense since
the white noise prior is saying there are some noise in the image, but the truth is
that there are no noise in the image, so the prior information is not right, which
leads the prior models to get worse resuls.

For the bottom image, the Gaussian model fails when the width of the Gaus-
sian blurring increases and the de-noising regularization help the Gaussian model
obtain reasonable result. I guess for the Gaussian midel the effect of increasing
the width is similar to adding noise, that is why the white noise prior helps the
Gaussian model get reasonable result. For the Poisson model, the results are not
good.

I test the deconvlucy algorithms in Matlab with two different parameters,
for the bottom image, one of them gets better results comparing to the other
algorithms.
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Fig. 3. Image deconvolution with different width of Gaussian. The top image has width
5 and the bottom width has width 8.
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3.2 Different noises

In Figure 4, the top and bottom images have difference noise levels, The bottom
one has more noise. The top one has Gaussian noise with mean 0 and vari-
ance 0.001, and the bottom one has Gaussian noise with mean 0 and variance
0.005. We use H1 prior for the Poisson model and use white noise model for the
Gaussian model.

The Gaussian model fails in both cases. This is caused by the noises: Y (ω)
is not zero while Φ(ω) is zero, thus X(ω) would be very large in this case. The
algorithms generally obtain worse results in the bottom image comparing to
the top one, but there are no significant differences between the results of the
Gaussian model with prior algorithm. Over the six algorithms, the Gaussian
model with prior algorithm gets the best performance since the blurred image
has noises and the prior information, white noise prior, is correct. In addition,
the deconvlucy algorithms in Matlab do not get better results in this case.

In Figure 5, we test our algorithms on a blurred image with Poisson noise.
The Poisson model is better than the Gaussian model. If we look carefully, we can
find more artifacts in the result of the Gaussian model comparing to the result
of the Poisson model. The prior models does not help and make the results even
worse. This should be cause by the prior information is not right: the noise is
Poisson distributed rather than Gaussian distributed. One of the deconvlucy also
gets good result.

4 Discussion

Generally, the Poisson model is more stable than the Gaussian model when noises
appear or the width of the Gaussian blurring increases. The regularization (prior
information) does not help when there are no noise and the width of th Gaussian
blurring is small. When the width of the Gaussian blurring is large or the noise
appears, the regularization might help, but it depends on what prior we use.
In a word, if we use the correct prior information, the information should help,
otherwise, the results would get worse.
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Fig. 4. Image deconvolution with different Gaussian noises. The top image has Gaus-
sian noise (0, 0.001) and the bottom one width (0, 0.005).
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Fig. 5. Image deconvolution with Poisson noise


